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A B S T R A C T

The three-dimensional holography technique offers a powerful method for storing the depth information of
objects, and it provides more realistic scene reconstruction compared with the two-dimensional case, so it
is widely used in beam shaping, holographic display, and image encryption. However, the fabrication of
holograms is currently limited to complex and time-consuming traditional nanofabrication techniques. Here,
we demonstrate the fabrication of a hologram containing depth information inside glass using femtosecond
laser direct writing. The whole process is simple and flexible because there is no complex operation like mask
preparation. Then the reconstruction of the three-dimensional object is demonstrated and evaluated, and the
experimental optimization as well as the limitations are also discussed.
1. Introduction

Optical holography is a technique for wavefront reconstruction by
recording the amplitude and phase of the wavefront. This technology
was first discovered by Dennis Gabor in 1948 [1]. Due to its ability to
record full information including the amplitude and phase, holography
is considered to be one of the most potential technologies for achieving
three-dimensional(3D) scene reconstruction. However, it was not until
the invention of the first laser in 1960, which solved the problem of
coherent light sources, that holography technology has been greatly
developed and the first practical optical holograms capable of recording
3D objects were realized by Leith in 1962 [2]. With the advent of
the information age, the functions of computer in information pro-
cessing have been applied to holography, which led to the emergence
of Computer-generated holograms(CGHs). The CGH technology can
perform the interference process without an optical system. In addition,
it can record virtual objects as long as the corresponding light wave
information is known, which greatly expands its application. It has
been widely used in 3D displays [3–5], beam shaping [6,7], ultrashort
pulse laser parallel processing [8–10], optical encryption [11–13] and
nonlinear holography [14–16]. Usually, CGHs are fabricated with stan-
dard nanofabrication technology including electron beam lithography,
ultraviolet lithography and so on [17,18]. The processes of fabrication
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require mask preparation or dry etching, which are relatively compli-
cated and time-consuming. They also need to be carried out in a strictly
controlled experimental environment.

Compared with the above methods, femtosecond laser has attracted
great interest as it has the advantages of high peak intensity and high
machining precision, so it is widely used in micro/nanofabrication such
as microlens arrays [19], gratings [20], photonic crystals [21,22] and
optical waveguides [23,24]. Furthermore, it is the only method that
can fabricate 3D structure inside transparent media, so it can effectively
resist external mechanical damage compared to structures processed on
the surface. It has been reported that femtosecond laser has fabricated
CGH patterns on different materials such as metal film [25], glass [26–
28], silicon [29], polymer [30,31] and lithium niobate crystal [15].

In this paper, we report a general approach to fabricating CGH
pattern inside glass by femtosecond laser direct writing. This pro-
cess does not require complex operations, so the proposed method
is efficient and flexible. The fabricated CGH pattern is made of mi-
crostructure arrays with a special shape that can modulate the spatial
distribution of the incident laser and then reconstruct the original
3D object. In previous researches, this method is always used for
two-dimensional(2D) imaging which cannot show the advantages of
holography in 3D imaging.
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Fig. 1. Diagram of generating CGH from 3D source image comprising four letters ‘‘SJTU’’ at different depth planes.
2. Method

To begin with, we chose multi-plane images of the letters ‘‘SJTU’’
as our 3D object model. As is illustrated in Fig. 1, the four letters
are divided into four layers which are positioned at different distances
from the hologram (𝑧1 = 50 mm, 𝑧2 = 55 mm, 𝑧3 = 60 mm, 𝑧4 = 65 mm),
and each layer has 512 × 512 pixels. The calculation process of the
CGH can be broken down into two steps. In the first step, we recorded
the complex amplitude 𝑈𝑗 (𝑥, 𝑦) of each layer of the virtual 3D object
using the following diffraction equation [32]:

𝑈𝑗 (𝑥, 𝑦) =
𝑒𝑖𝑘𝑧𝑗
𝑖𝑘𝑧𝑗 ∬ 𝑢𝑗 (𝑥𝑗 , 𝑦𝑗 )𝑒

𝑖𝜑𝑗 (𝑥𝑗 ,𝑦𝑗 )𝑒
𝑖𝑘
2𝑧𝑗

[(𝑥−𝑥𝑗 )2+(𝑦−𝑦𝑗 )2]𝑑𝑥𝑗𝑑𝑦𝑗 (1)

where 𝑢𝑗 (𝑥𝑗 , 𝑦𝑗 ) and 𝜑𝑗 (𝑥𝑗 , 𝑦𝑗 ) represent the complex amplitude and
phase of the 𝑗th layer respectively. 𝑘 = 2𝜋∕𝜆 is the wave number, and
𝜆 is the wavelength. 𝑧𝑗 is the distance between the 𝑗th layer and the
hologram plane. Then, the total complex amplitude on the hologram
plane can be expressed as:

𝑈 (𝑥, 𝑦) =
4
∑

𝑗
𝑈𝑗 (𝑥, 𝑦) = 𝐴0 (𝑥, 𝑦) 𝑒𝑖𝜑0(𝑥,𝑦) (2)

where 𝐴0(𝑥, 𝑦) and 𝑒𝑖𝜑0(𝑥,𝑦) are the amplitude and phase term of the
complex amplitude on the hologram plane, respectively.

Next, we chose a suitable way to encode the complex fields in the
hologram plane. Because we use the femtosecond laser to modulate the
glass with a high power which results in two states corresponding to
the actual laser-nonirradiated area and laser-irradiated area, the binary
Fresnel CGH was selected in our experiments. Through the interference
of the object wave 𝑈 (𝑥, 𝑦) and the planar reference wave 𝑅(𝑥, 𝑦) =
𝑅𝑒𝑖2𝜋𝛼𝑥, where 𝑅 and 𝛼 are the amplitude and the carrier frequency of
the object wave respectively, we first obtain the transmittance function
ℎ(𝑥, 𝑦) of the hologram, it can be represented as:

ℎ(𝑥, 𝑦) =∣ 𝑈 (𝑥, 𝑦) + 𝑅(𝑥, 𝑦) ∣2

= 1
2
{

1 + 𝐴0(𝑥, 𝑦)𝑐𝑜𝑠[𝜑0(𝑥, 𝑦) − 2𝜋𝛼𝑥]
}

(3)

The bright fringes equation of the hologram can be obtained as:

𝜑 (𝑥, 𝑦) − 2𝜋𝛼𝑥 = 2𝜋𝑛 (4)
2

0

where 𝑛 represents the serial number of the bright fringes, 𝑛 = 0,±1,
±2, ⋅ ⋅ ⋅. By solving the position of each bright fringe and opening a
thin slit, a binary transmission grating is formed, that is, the phase
of the object light wave is encoded. The encoding of the amplitude is
obtained by introducing an offset 𝑐𝑜𝑠𝜋𝑞(𝑥, 𝑦) to modulate the width of
the bright fringes [33], where 𝑞(𝑥, 𝑦) = 𝑎𝑟𝑐𝑠𝑖𝑛[𝐴0(𝑥, 𝑦)]∕𝜋 and amplitude
𝐴0(𝑥, 𝑦) takes the normalized value, this coding method is widely used
in standard wavefront generation and interference detection [34,35].
Then, interferometric binary CGH is represented as follows:

𝐻(𝑥, 𝑦) =

{

1, 𝑐𝑜𝑠[𝜑0(𝑥, 𝑦) − 2𝜋𝛼𝑥] ≥ 𝑐𝑜𝑠𝜋𝑞(𝑥, 𝑦)
0, 𝑜𝑡ℎ𝑒𝑟𝑠

(5)

All calculations are carried out with the software MATLAB.

3. Experiment

The CGH was fabricated using a compact ytterbium-doped diode-
pumped ultrafast amplified laser at the center wavelength of 1030
nm, which has a pulse width of 500 fs. The femtosecond laser direct
writing system is shown in Fig. 2. A fused silica glass with a thickness
of 1 mm was used as a sample which was mounted on the computer-
controlled 𝑋𝑌𝑍 translation stage with a resolution of 0.1 μm. The laser
beam was focused 50 μm below the sample surface by an objective lens
with a numerical aperture of 0.50 (RMS20X-PF, Olympus). The moving
speed was 800 μm∕s and the moving direction was perpendicular to
the laser beam. The Fabricating condition of CGH was detected in real-
time through the charge-coupled device (CCD) attached to an optical
microscope.

In order to obtain well-defined patterns, we must first determine
the appropriate processing parameters. Adjusting the energy of a sin-
gle pulse from small to large on an order of magnitude can lead to
different results: no modulation, small refractive index changes that
can be used for fabricating various optical devices such as waveguides,
controlled modulation for optical data storage (formation of void-like
structures), uncontrollable damage [36,37]. In our experiment, a single
pulse energy of about 2.6 μJ is used to generate a microexplosion
inside the glass. The material at the center of the focal spot is forced
into the surrounding volume, leading to the formation of a void-
like structure which is surrounded by densified material. In this case,
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Fig. 2. Schematic illustration of the fs laser direct writing system for fabricating the CGH pattern.
the decrement of the refractive index is large enough, so that the
structure can be approximately seen to be opaque [38]. In addition,
the laser we use had a repetition rate of 300 kHz which ensured
a satisfactory processing effect at a relatively high translation stage
movement (800 μm∕s). Under these parameters, the diameter of the
irradiated spots was about 3 μm which makes the resolution up to
111 Kpixels/mm2 (∼8500 dpi). Through the control of the computer
program, the translation stage changed the relative position of the focus
point and the sample through step movement, and cooperated with
the shutter to selectively illuminate the sample, the irradiated points
became non-transparent, corresponding to the black pixels in the binary
hologram, while the non-irradiated points remained in the original
transparent state corresponding to the white pixels. The binary Fresnel
CGH contains 512 × 512 pixels, as shown in Fig. 1. As can be seen,
Fig. 3(a) and (b) show the CGH pattern fabricated by femtosecond laser
which were imaged by 5X, 20X microscope objectives respectively. The
fabricated hologram was written within an area of 1.5 × 1.5 mm2 and
the total processing time is 2.5 h.

4. Results and discussions

In order to characterize the 3D reconstruction performance of the
fabricated CGH, we have built an optical holographic imaging system,
as shown in Fig. 4. The system consists of a laser source with a
wavelength of 785 nm, a standard beam expander, a sample with a CGH
pattern and a CCD camera. The diameter of the beam was adjusted to
1500 μm to fit the size of the CGH. The CCD camera was fixed on a
three-dimensional movable stand to capture the reconstruction results
at different distances from the hologram pattern.

From the reconstructed image captured by the CCD, we can see
that the letters have the clearest reconstruction when they are in the
designed imaging plane, as shown in the red box, while the other three
letters are relatively blurred, which can clearly prove the hologram
contains the 3D depth information of the original object.

The numerical reconstructions of the CGH at four different depth
planes are shown in Fig. 5(a–d) and the corresponding experimental
reconstruction results are shown in Fig. 5(e–h). The distances between
the reconstructed images and the hologram plane are 50 mm, 55
3

Table 1
The results of MSE and MSEr .

S J T U
(𝑧1 = 50 mm) (𝑧2 = 55 mm) (𝑧3 = 60 mm) (𝑧4 = 65 mm)

MSE 0.0342 0.0337 0.0282 0.0290

MSEr 0.2868 0.2990 0.3011 0.2874

mm, 60 mm, and 65 mm, respectively. As we can see, the upper and
lower pictures in the same column have the same characteristics of
the corresponding letters, and the three-dimensional effect of optical
reconstruction is in good agreement with numerical reconstruction.

In order to accurately evaluate the 3D reconstruction effect of the
hologram, the mean square error (MSE) is usually introduced. It is the
average of the squares of the corresponding pixel differences between
the numerical and the experimental reconstructed images, which can
be expressed as:

MSE =
∑

𝑚𝑛[𝐼(𝑚, 𝑛) −𝐾(𝑚, 𝑛)]2

𝑚 × 𝑛
(6)

where the 𝐼(𝑚, 𝑛) and 𝐾(𝑚, 𝑛) denote the optical intensity matrices of
the experimental and numerically simulated images respectively, and
𝑚 and 𝑛 are the number pixels of matrices corresponding to horizontal
and vertical directions. Generally speaking, a low MSE corresponds to a
high-quality reconstruction. For comparison, we choose a random noise
image generated by random numbers as a reference, and its root mean
square error is denoted as MSEr . Table 1 shows the results of MSE
and MSEr . As we can see, the MSE of the reconstructed images are
an order of magnitude smaller than that of the random noise images,
which indicates that the 3D object is well reconstructed by our method.

In fact, the quality of 3D reconstructed images based on our pro-
posed method can be further improved. First, the pixel size can be
further reduced by beam shaping, lowering the laser energy or using
other transparent materials with higher damage threshold. As a result,
the resolution of holograms can be efficiently increased if the fabricat-
ing area is fixed. According to the diffraction equation, the diffraction
point spacing at small angles is inversely proportional to the grating
period (corresponding to the hologram pixels spacing), so reducing
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Fig. 3. Optical images of CGH pattern fabricated by femtosecond laser. (a) and (b) correspond to 5×, 20× microscope objective imaging respectively.
Fig. 4. Schematic illustration of the optical system for holographic image reconstruction.
the pixel size can be used to create a larger size reconstructed im-
ages without overlapping. Secondly, the femtosecond laser may affect
the surrounding area due to power fluctuation when irradiating the
modulated pixels, which can be solved by optimizing the fabricating
parameters. Finally, due to the high efficiency of femtosecond laser
direct writing, in principle, the pixels of the hologram can be increased
to optimize the reconstructed image quality.
4

Certainly, this approach has its limitations. First of all, compared
with traditional nanofabrication technology (A few hundred nanome-
ters), the pixel size fabricated in our experiment is about 3 μm, so the
hologram contains less information and lower resolution in an equal
area. Although the pixel size can be reduced by some methods, the
adjustment ability is limited. Secondly, considering the characteristic
of femtosecond laser micromachining in our experiment, the fabricated
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Fig. 5. (a)–(d) The numerical reconstructions of 3D model ‘‘SJTU’’ at distance of
z1 , z2 , z3 and z4, respectively. (e)–(h) The experimentally reconstructed images in the
corresponding planes along the 𝑧-axis directions.

hologram is an amplitude binary hologram, so the original image and
its conjugate image will be reconstructed at the same time. How to
eliminate the conjugate image and fabricate a multi-order hologram
are also worth exploring.

5. Conclusion

In summary, we have demonstrated the realization of 3D holo-
graphic imaging in a fused silica by femtosecond laser direct writing.
Based on the method of computational holographic interference, the
hologram pattern is obtained by layering and encoding the 3D virtual
object ‘‘SJTU’’. The original object is optical reconstructed at different
depths. Both visual effects and numerical analysis verify the results of
the experiment. Combined with the discussion of experimental opti-
mization and future improvements in coding methods, the technique
can be used in the fields of 3D display, beam shaping and diffractive
optical element fabrication [39]. It is worth mentioning that this pro-
cessing method is suitable for a variety of transparent materials, so
we can explore the behavior on different materials, such as nonlinear
holographic imaging in nonlinear crystals.
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